[Changes of Na(+) channels in rat hippocampal CA1 neurons in early development after birth].

نویسندگان

  • Jia-Qi Qiao
  • Ai-Li Liu
  • Tiao-Tiao Liu
  • Xin Tian
چکیده

The purpose of this research is to investigate the critical period of voltage-gated Na(+) channel development in hippocampal CA1 neurons. Changes of Na(+) currents in acutely isolated hippocampal CA1 neurons of rats at different ages (0-4 weeks after birth) were recorded using the whole-cell patch-clamp technique. The results indicated that the maximum current density of Na(+) channels was increasing with age, and the amplitudes in 1, 2, 3 and 4 weeks respectively grew by (42.76 ± 4.91)%, (146.80 ± 7.63)%, (208.79 ± 5.28)% and (253.72 ± 5.74)% (n = 10, P < 0.05) compared with that in 0 week. The current density in CA1 neurons of 1-2 weeks after birth increased more significantly than those of other groups. The activation curve of Na(+) channel shifted to the left. The half-activation voltages (mV) in 0-2 weeks were -39.06 ± 0.65, -43.41 ± 0.52, -48.29 ± 0.45 (n = 10, P < 0.05), respectively, showing significant age-dependent decrease, and there were no significant changes in other groups. The slope factors of activation curve for each group did not change significantly. There were no regular changes in inactivation curve and no significant changes in half-inactivation voltage. The slope factors of inactivation curve in 1-2 weeks were: 5.77 ± 0.56, 4.42 ± 0.43 (n = 10, P < 0.05). The inactivation rate of the second week after birth was faster than that of the first week, and there were no significant changes during 0-1 week and 2-4 weeks. The recovery from inactivation curve of Na(+) channel shifted to the left. The recovery time declined in 1-3 weeks. Changes of action potential properties were consistent with Na(+) current. These results suggest that the period of 1-2 weeks after birth may be the critical development period of voltage-gated Na(+) channel in hippocampal CA1 neurons. During this time, the distribution of Na(+) channel increases significantly; the activation curve of Na(+) channel shifts to the left; inactivation rate increases as well as recovery time shortens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats

Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...

متن کامل

Effects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices

Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...

متن کامل

Morphine Consumption During Lactation Impairs Short-Term Neuronal Plasticity in Rat Offspring CA1 Neurons

Background: Facing environmental factors during early postnatal life, directly or indirectly via mother-infant relationships, profoundly affects the structure and function of the mammals’ Central Nervous System (CNS). Objectives: This study aimed to evaluate the effect of morphine consumption during the lactation period on short-term synaptic plasticity of the hippocampal Cornu Ammonis 1 (C...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Morphological Changes in Hippocampal Ca1 Area in Diabetic Rats: A Golgi-impregnation Study

Background and Objective: Although diabetes mellitus is known to be one of the risk factors for dementia but neuropathic changes in the brain of diabetic patients have not been completely revealed. Therefore, this research study was done to evaluate structural changes in pyramidal neurons of hippocampal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Sheng li xue bao : [Acta physiologica Sinica]

دوره 65 2  شماره 

صفحات  -

تاریخ انتشار 2013